Molecular bioactivity extrapolation to novel targets by support vector machines
نویسندگان
چکیده
The early phases of drug discovery use in silico models to rationalize structure activity relationships, and to predict the activity of novel compounds. However, the performance of these models is not always acceptable and the reliability of external predictions both to novel compounds and to related protein targets is often limited. Proteochemometric modeling [1] adds a target description, based on physicochemical properties of the binding site, to these models. Our proteochemometric models [2] are based on Scitegic circular fingerprints on the compound side and on a customized protein fingerprint on the target side. This protein fingerprint is based on a selection of physicochemical descriptors obtained from the AAindex database. Through PCA we selected a number of physicochemical properties which are hashed in a fingerprint using the Scitegic hashing algorithm. We compared this fingerprint to a number of protein descriptors previously published, including the Z-scales, the FASGAI and the BLOSUM descriptors. Our fingerprint performs superior to all of these. In addition, we show that proteochemometric models improve external prediction capabilities. In the case of classification this leads to models with a higher specificity when compared to conventional QSAR. In the case of regression our models show an average lower RMSE of 0.12 log units when based on a pIC50 output variable compared to conventional QSAR modeling the same data-set. Furthermore, our models enable target extrapolation. As a result we can predict the activity of known and new compounds on new targets while retaining the same model quality as when performing external validation without target extrapolation. Author details Amsterdam Center for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands. Tibotec, Gen De Wittelaan L 11B 3, 2800 Mechelen, Belgium.
منابع مشابه
Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کاملA Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملSTAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملA QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کامل